
How to peer review like-a-boss

By Aaron Carlino (aka unclecheese)

Out of the abyss

http://www.silverstripe.com

Developers are introverts. Code is art. We’re artists, and like all artists, we love to create
beautiful things. Alone. Our jobs rarely afford us that luxury, though, and that’s not such
a bad thing. Coming up for air once in awhile can be really beneficial and healthy. It’s
important to remind yourself that what you’re creating isn’t just about you.

One great way to get out of your head is to engage in peer reviews. Whether you
already have a peer review process established, or are new to the idea, these ten
tips can help you become a more aware, outward-thinking developer.

Why we peer review?

Perfecting the art of Peer Review
Use and share these tips to peer review like-a-boss!

Write code that’s reviewable

Select the right peer reviewer

For the Reviewee:

For the Reviewer:

If you don’t understand the
feedback, don’t implement it

Be timely

It may seem like this goes without saying, but you’d be
surprised how often peer reviews don’t move forward
simply because the code is not of good enough quality
to warrant a peer review. That the code is functioning is
not enough to qualify it for peer review. It should be clean
and easily readable by another developer. Just because a peer is more senior or more experienced

than you does not intrinsically qualify that person to peer
review your code. Prefer someone of lower seniority with
the right skillset to someone of higher seniority who
lacks everyday experience with the technologies your
code is using.

Has your peer review come back littered with comments
on concepts that are over your head? If so, this is not
your queue to simply blindly implement the suggested
patches. This is your time to learn about
those things, not just so that you understand what it is
you’re doing, but more importantly, so you’ll know better
next time.

Once a body of code gets stale, it becomes much more
difficult to rebase and merge. As a reviewer, be quick to
get involved before things cool off. Depending on the
project, you may find that the author of the code forgets
about it after a while and may have moved on to other
things. Let the author know you’re interested. If you care,
your reviewee will follow suit.

1

2

3

4

//

//

</1337> ?

Don’t be afraid to say “no”

Encourage risk taking

Understand the shelf life
Be proactive

Get to know your robots

Scope it

This can be a really difficult aspect of a peer review, but
at the end of the day, it’s not really a review if you’re not
pushing back.
Here are a few example questions you can ask to help
figure out if you should be pushing back.

• Is there a potential for regressions?
• Does this change violate semver?
• Does this change only serve an edge case?
• Does this change make use of all existing and available

APIs in the framework?
• Are variable names appropriate for their context?
• Do the source code comments make sense?

A tennis player aims to get 70-75% of first serves in.
A player who has a higher success rate than that is
not hitting hard enough. As a reviewer, it’s your job to
encourage a healthy level of risk taking. If 100% of the
code you review is getting accepted, your review process
is doing absolutely nothing for you or your reviewee.

Be sure to have appropriate expectations for how long
the reviewee’s work will live in the codebase. Is this a
feature that’s likely on the chopping block next quarter?
If so, lower the bar a bit. Don’t spend an inappropriate
amount of time picking apart every little detail if you know
it will be eclipsed in the near future.

Many of the best peer reviews are done proactively,
when one team member asks to look at what someone
else is working on, in the moment. Remember, the end
game isn’t code, it’s a great product. Helping out your
team members is one way to increase your chances of
getting there.

Much of a peer review is objective. You’re enforcing
coding conventions, running unit tests, and maybe even
checking for performance impacts. All of that can be done
by robots. Get familiar with scritinizr and/or travis, and
stop spending time on things that machines can do faster
and better than you.

There’s a fable in open-source communities that when
a pull request is 20 lines, everyone picks it apart to
eternity, but when it’s 20,000 lines, everyone just glosses
over it. We tend to seek the most economical ways to
use our attention and brain power. For large bodies of
code, scope your review to just a manageable section.
Your review will mean much more if it garners all of your
energy, and not just a fractional handout thereof.

5

7
8

9
10

6

Learn more development tips on the
SilverStripe blog

Read our original blog on peer reviewing practices

www.silverstripe.com

http://www.silverstripe.org/blog
http://www.silverstripe.org/blog/out-of-the-abyss-how-peer-reviews-make-you-a-better-developer
http://www.silverstripe.com

